Wednesday, July 23, 2008

Access Control System Basics and Components

Access control is the ability to permit or deny the use of a particular resource by a particular entity. Access control mechanisms can be used in managing physical resources (such as a movie theater, to which only ticketholders should be admitted), logical resources (a bank account, with a limited number of people authorized to make a withdrawal), or digital resources (for example, a private text document on a computer, which only certain users should be able to read).
Access Control System Operation
When a credential is presented to a reader, the reader sends the credential’s information, usually a number, to a control panel, a highly reliable processor. The control panel compares the credential's number to an access control list, grants or denies the presented request, and sends a transaction log to a database. When access is denied based on the access control list, the door remains locked. If there is a match between the credential and the access control list, the control panel operates a relay that in turn unlocks the door. The control panel also ignores a door open signal to prevent an alarm. Often the reader provides feedback, such as a flashing red LED for an access denied and a flashing green LED for an access granted.
The above description illustrates a single factor transaction. Credentials can be passed around, thus subverting the access control list. For example, Alice has access rights to the server room but Bob does not. Alice either gives Bob her credential or Bob takes it; he now has access to the server room. To prevent this, two-factor authentication can be used. In a two factor transaction, the presented credential and a second factor are needed for access to be granted. The second factor can be a PIN, a second credential, operator intervention, or a biometric input. Often the factors are characterized as
something you have, such as a credential,
something you know, e.g. a PIN, or
something you are, typically a biometric input.
Access Control System Components
An access control point, which can be a door, turnstile, parking gate, elevator, or other physical barrier where granting access can be electrically controlled. Typically the access point is a door. An electronic access control door can contain several elements. At its most basic there is an electric lock (see electronic lock.) The lock is unlocked by an operator with a switch. To automate this, operator intervention is replaced by a reader. The reader could be a keypad where a code is entered, it could be a card reader, or it could be a biometric reader. Readers do not usually make an access decision but send a card number to an access control panel that verifies the number against an access list. To monitor the door position a magnetic door switch is used. In concept the door switch is not unlike those on refrigerators or car doors. Generally only entry is controlled and exit is uncontrolled. In cases where exit is also controlled a second reader is used on the opposite side of the door. In cases where exit is not controlled, free exit, a device called a request-to-exit (REX) is used. Request-to-exit devices can be a pushbutton or a motion detector. When the button is pushed or the motion detector detects motion at the door, the door alarm is temporarily ignored while the door is opened. Exiting a door without having to electrically unlock the door is called mechanical free egress. This is an important safety feature. In cases where the lock must be electrically unlocked on exit, the request-to-exit device also unlocks the door.
A credential is something you know, such as number or PIN, something you have, such as an access badge, something you are, such as a biometric feature, or some combination of these. The typical credential is an access card, key fob, or other key. There are many card technologies including magnetic stripe, bar code, Wiegand, 125 kHz proximity, contact smart cards, and contactless smart cards. Typical biometric technologies include fingerprint, facial recognition, iris recognition, retinal scan, voice, and hand geometry.
Bar Code Technology
A bar code is a series of alternating dark and light stripes that are read by an optical scanner. The organization and width of the lines is determined by the bar code protocol selected. There are many different protocols but code 39 is the most popular in the security industry. Sometimes the digits represented by the dark and light bars are also printed to allow people to read the number without an optical reader. The advantage of using bar code technology is that it is cheap and easy to generate the credential and it can easily be applied to cards or other items. The disadvantage of this technology is that it is cheap and easy to generate a credential making the technology susceptible to fraud and the optical reader can have reliability problems with dirty or smudged credentials. One attempt to reduce fraud is to print the bar code using carbon-based ink and then cover the bar code with a dark red overlay. The bar code can then be read with an optical reader tuned to the infrared spectrum, but can not easily be copied by a copy machine. This does not address the ease with which bar code numbers can be generated from a computer using almost any printer.
Magnetic Stripe Technology
Magnetic stripe technology, usually called mag-stripe, is so named because of the stripe of magnetic oxide tape that is laminated on a card. There are three tracks of data on the magnetic stripe. Typically the data on each of the tracks follows a specific encoding standard, but it is possible to encode any format on any track. A mag-stripe card is cheap compared to other card technologies and is easy to program. The magnetic stripe holds more data than a bar code can in the same space. While a mag-stripe is more difficult to generate than a bar code, the technology for reading and encoding data on a mag-stripe is widespread and easy to acquire. Magnetic stripe technology is also susceptible to misreads, card wear, and data corruption.
Wiegand Card Technology
Wiegand card technology is a patented technology using embedded ferromagnetic wires strategically positioned to create a unique pattern that generates the
Proximity Card Technology
The Wiegand effect was used in early access cards. This method was abandoned in favor of other technologies. The new technologies retained the Wiegand upstream data so that the new readers were compatible with old systems. Readers are still called Wiegand but no longer use the Wiegand effect. A Wiegand reader radiates a 1" to 5" electrical field around itself. Cards use a simple LC circuit. When a card is presented to the reader, the reader's electrical field excites a coil in the card. The coil charges a capacitor and in turn powers a integrated circuit. The integrated circuit outputs the card number to the coil which transmits it to the reader.
A common proximity format is 26 bit Wiegand. This format uses a facility code, sometimes also called a site code. The facility code is a unique number common to all of the cards in a particular set. The idea is that an organization will have their own facility code and a set of numbered cards incrementing from 1. Another organization has a different facility code and their card set also increments from 1. Thus different organizations can have card sets with the same card numbers but since the facility codes differ, the cards only work at one organization. This idea worked fine for a while but there is no governing body controlling card numbers, and different manufacturers can supply cards with identical facility codes and identical card numbers to different organizations. Thus there is a problem of duplicate cards. To counteract this problem some manufacturers have created formats beyond 26 bit Wiegand that they control and issue to organizations.
In the 26 bit Wiegand format, bit 1 is an even parity bit. Bits 2-9 are a facility code. Bits 10-25 are the card number. Bit 26 is an odd parity bit. Other formats have a similar structure of a leading facility code followed by the card number and including parity bits for error checking.
Smart Card
There are two types of smart cards: contact and contactless. Both have an embedded microprocessor and memory. The smart card differs from the card typically called a proximity card in that the microchip in the proximity card has only one function: to provide the reader with the card’s identification number. The processor on the smart card has an operating system and can handle multiple applications such as a cash card, a pre-paid membership card, and even an access control card. The difference between the two types of smart cards is found in the manner with which the microprocessor on the card communicates with the outside world. A contact smart card has eight contacts, which must physically touch contacts on the reader to convey information between them. A contactless smart card uses the same radio-based technology as the proximity card with the exception of the frequency band used. Smart cards allow the access control system to save user information on a credential carried by the user rather than requiring more memory on each controller.
A personal identification number (PIN) falls in the category of what you know rather than what you have. The PIN is usually a number consisting of four to eight digits. Less and the number is too easy to guess. More and the number is too difficult to remember. The advantage to using a PIN as an access credential is that once the number is memorized, the credential cannot be lost or left somewhere. The disadvantage is the difficulty some people have in remembering numbers that are not frequently used and the ease with which a PIN can be observed and therefore used by unauthorized people. The PIN is even less secure than a bar code or magnetic stripe card.

No comments: